If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-x^2+36x-96=0
We add all the numbers together, and all the variables
-1x^2+36x-96=0
a = -1; b = 36; c = -96;
Δ = b2-4ac
Δ = 362-4·(-1)·(-96)
Δ = 912
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{912}=\sqrt{16*57}=\sqrt{16}*\sqrt{57}=4\sqrt{57}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-4\sqrt{57}}{2*-1}=\frac{-36-4\sqrt{57}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+4\sqrt{57}}{2*-1}=\frac{-36+4\sqrt{57}}{-2} $
| (3x-26)*x=90 | | 40*s=280 | | -2x+6=3x+-4 | | 178-x=128 | | 6x+5×(2-3)=4 | | 209=67-x | | -2x6=3x-4 | | v+16=34 | | 191=-x+18 | | −40=5x−10 | | 31=z+13 | | 1/4n-3+3/5n=9 | | 12k+36=84 | | (6y-5)(10y-7)=180 | | w*900=54,000 | | 82.84=-8.48+4x | | 9x+x+2x=48 | | 29x-180=120 | | 29x-180=720 | | a=8.9=0.23 | | 8=48/k | | 18j-234j=234 | | 8=64/d | | 5x-103=120 | | (5x-103)+(2x+60)+(7x-31)+(6x-6)+(9x-100)=720 | | x/0.54=6.2 | | 5*m=45 | | 6x=2(3x-5)+10 | | (5x-103)+(2x+60)+(7x-31)+(6x-6)+(9x-100)=120 | | /7(x-4)-2x=19+3(x+3) | | 2x+3x+x=190 | | x/0.19=7.8 |